2020/TDC(CBCS)/ODD/SEM/ MTMSEC-501T/333D

TDC (CBCS) Odd Semester Exam., 2020 held in March, 2021

MATHEMATICS

(5th Semester)

Course No.: MTMSEC-501T

(Integral Calculus)

Full Marks: 50 Pass Marks: 20

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION—A

Answer any fifteen questions:

 $1 \times 15 = 15$

1. Write down the value of

$$\frac{f(x)}{f(x)} dx$$

2. Write down the value of

$$\frac{dx}{x^2 a^2}$$

(Turn Over) 10-21/399

(2)

3. If

$$\frac{d}{dx}[f(x)]$$
 $F(x)$

then find the value of F(x) dx.

4. Find the value of

$$\frac{d}{dx}[f(x) dx]$$

5. Write down the value of $a^x dx$.

6. Write down the value of

$$\frac{dx}{\sqrt{a^2 + x^2}}$$

- **7.** If f(x) is even, then what is the value of $\int_{a}^{a} f(x) dx$?
- 8. Write down the value of

$$\frac{1}{2} \sin^3 x \, dx$$

9. Write True or False:

$$\int_{0}^{2} \log(\sin x) dx$$
 $\int_{0}^{2} \log(\cos x) dx$

10. Find

$$\int_{1}^{0} |x| dx$$

11. Find the value of

$$\int_{a}^{a} x (x^{2}) dx$$

- 12. Express $\int_{a}^{b} f(x) dx$ as limit sum.
- **13.** Write down the reduction formula for $\int_{0}^{2} \sin^{n} x dx$, when *n* is odd.
- **14.** Write down the reduction formula for $\int_{0}^{2} \cos^{n} x \, dx$, when *n* is even.
- **15.** Write True or False :

$$\int_{0}^{2} \sin^{n} x \, dx \qquad \int_{0}^{2} \cos^{n} x \, dx$$

- **16.** Find the value of $\int_{0}^{2} \sin^{4} x \, dx$ by using reduction formula.

- **18.** Write down the reduction formula for $\sec^n x \, dx$.
- **19.** Write down the geometrical interpretation of $\int_{a}^{b} f(x) dx$.
- **20.** Write down the parametric equation of circle x^2 y^2 r^2 .
- **21.** Write down the parametric equation of astroid $x^{2/3}$ $y^{2/3}$ $a^{2/3}$.
- **22.** Write down the formula of length in Cartesian form.
- **23.** Write down the formula of length in parametric form.
- **24.** What is the length of circumference of a circle of radius a?
- **25.** What is the surface area of the sphere of radius a?
- **26.** What is the volume of the solid generated by the curve y f(x), intercepted between x a and x b and the axis of revolution about x-axis?

- **27.** What is the surface area of the solid generated by the curve x + f(y), intercepted between y + a and y + b and the axis of revolution about y-axis?
- **28.** What is the volume of the sphere generated by the rotation of the circle $x^2 y^2 4a^2$?
- **29.** What is the volume of the solid generated by the revolution of the area bounded by the curve r f() and radii vectors $_1$, $_2$ and revolution about initial line 0?
- **30.** What is the volume of a paraboloid of revolution formed by revolving the parabola y^2 4ax about the x-axis and bounded by the section x h?

SECTION—B

Answer any *five* questions : $2 \times 5 = 10$

31. Evaluate:

$$\frac{\cos\sqrt{x}}{\sqrt{x}}\,dx$$

32. Evaluate:

10-21/399

$$\frac{e^{\sqrt{x}}\cos(e^{\sqrt{x}})}{\sqrt{x}}\,dx$$

(Turn Over)

- 33. Prove that $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a + b + x) dx$
- **34.** Prove that $\int_{0}^{2} \log(\tan t) dt = 0$
- **35.** If $I_n = \int_0^{/2} \sin^n x \, dx$, n = 1, then prove that $I_n = \frac{n-1}{n} I_{n-2}$
- **36.** If $I_n = \tan^n x \, dx$, n = 1, then prove that $I_n = \frac{\tan^n x}{n-1} I_{n-2}$
- **37.** Find the length of the curve $x e \sin x$, $y e \cos x$; 0 and $z \sin x$
- **38.** Find the length of the curve r = 2; 0 and $\sqrt{5}$.
- **39.** Find the volume generated by revolving about x-axis, the area bounded by $y \cos x$ between x = 0 and x = /2.
- **40.** Find the surface area generated by revolving about *y*-axis, the area bounded by $y x^2$ between y 0 and $y \sqrt{2}$.

10-21**/399** (Continued)

SECTION—C

Answer any *five* questions:

5×5=25

41. Evaluate:

$$(\sqrt{\tan x} \quad \sqrt{\cot x}) dx$$

42. Evaluate:

$$\frac{dx}{x^4 a^2}$$

43. Prove that

$$\int_0^{2} \log(\sin x) \, dx = -\log \frac{1}{2}$$

44. Evaluate:

$$\lim_{n} 1 \frac{1^{2}}{n^{2}} 1 \frac{2^{2}}{n^{2}} \cdots 1 \frac{n^{2}}{n^{2}}^{1/n}$$

- **45.** If $u_n = \binom{2}{0} x^n \sin x \, dx$, n = 1, then prove that $u_n = n(n-1)u_{n-2} = n(\frac{1}{2})^{n-1}$.
- **46.** If $I_{m,n} = \int_0^{/2} \sin^m x \cos^n x \, dx$; m, n being positive integers greater than 1, then prove that

$$I_{m, n} = \frac{n-1}{m-n} I_{m, n-2}$$

(Turn Over)

- **47.** Find the total length of the astroid $x^{2/3}$ $y^{2/3}$ $a^{2/3}$.
- **48.** Find the length of an arc of the cycloid $x = a(\sin x)$, $y = a(1 \cos x)$.
- **49.** Find the area of the surface generated by the arc of the parabola $y^2 + 4ax$ bounded by its latus rectum about x-axis.
- **50.** Find the volume of the ellipsoid by the revolution of the ellipse

$$\frac{x^2}{a^2}$$
 $\frac{y^2}{b^2}$ 1

about the major axis.

* * *